Differentiable Submodular Maximization
نویسندگان
چکیده
We consider learning of submodular functions from data. These functions are important in machine learning and have a wide range of applications, e.g. data summarization, feature selection and active learning. Despite their combinatorial nature, submodular functions can be maximized approximately with strong theoretical guarantees in polynomial time. Typically, learning the submodular function and optimization of that function are treated separately, i.e. the function is first learned using a proxy objective and subsequently maximized. In contrast, we show how to perform learning and optimization jointly. By interpreting the output of greedy maximization algorithms as distributions over sequences of items and smoothening these distributions, we obtain a differentiable objective. In this way, we can differentiate through the maximization algorithms and optimize the model to work well with the optimization algorithm. We theoretically characterize the error made by our approach, yielding insights into the tradeoff of smoothness and accuracy. We demonstrate the effectiveness of our approach for jointly learning and optimizing on synthetic maxcut data, and on a real world product recommendation application.
منابع مشابه
Forthcoming in Mathematical Programming MAXIMIZING A CLASS OF SUBMODULAR UTILITY FUNCTIONS
Given a finite ground set N and a value vector a ∈ R , we consider optimization problems involving maximization of a submodular set utility function of the form h(S) = f (∑ i∈S ai ) , S ⊆ N , where f is a strictly concave, increasing, differentiable function. This function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, ...
متن کاملMirror-Descent-like Algorithms for Submodular Optimization
In this paper we develop a framework of submodular optimization algorithms in line with the mirror-descent style of algorithms for convex optimization. We use the fact that a submodular function has both a subdifferential and a superdifferential, which enables us to formulate algorithms for both submodular minimization and maximization. This reveals a unifying framework for a number of submodul...
متن کاملOn maximizing a monotone k-submodular function subject to a matroid constraint
A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative ksubmodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also pro...
متن کاملMaximization of Submodular Set Functions
In this technical report, we aim to give a simple yet detailed analysis of several various submodular maximization algorithms. We start from analyzing the classical greedy algorithm, firstly discussed by Nemhauser et al. (1978), that guarantees a tight bound for constrained maximization of monotonically submodular set functions. We then continue by discussing two randomized algorithms proposed ...
متن کاملSubmodular Function Minimization and Maximization in Discrete Convex Analysis
This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...
متن کامل